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PINSPlus-package Perturbation Clustering for data INtegration and disease Subtyping

Description

This package implements clustering algorithms proposed by Nguyen et al. (2017, 2019). Pertur-
bation Clustering for data INtegration and disease Subtyping (PINS) is an approach for integraton
of data and classification of diseases into various subtypes. PINS+ provides algorithms support-
ing both single data type clustering and multi-omics data type. PINSPlus is an improved version
of PINS by allowing users to customize the based clustering algorithm and perturbation methods.
Furthermore, PINSPlus is fast and supports the analysis or large datasets with millions of samples
and features.

Details

PINS+ provides PerturbationClustering and SubtypingOmicsData functions for single data
type clustering and multi-omics data type clustering. PINS makes use of different clustering al-
gorithms such as kmeans and pam to perform clustering actions. The principle of PINS is to find
the optimum number of clusters and location of each sample in the clusters based on perturbation
methods such as noise or subsampling. PINS+ allows users to pass their own clustering algorithm
and perturbation method.

References

H Nguyen, S Shrestha, S Draghici, & T Nguyen. PINSPlus: a tool for tumor subtype discovery in
integrated genomic data. Bioinformatics, 35(16), 2843-2846, (2019).

T Nguyen, R Tagett, D Diaz, S Draghici. A novel method for data integration and disease subtyping.
Genome Research, 27(12):2025-2039, 2017.

Nguyen, H., Shrestha, S., Draghici, S., & Nguyen, T. (2019). PINSPlus: a tool for tumor subtype
discovery in integrated genomic data. Bioinformatics, 35(16), 2843-2846.

See Also

PerturbationClustering, SubtypingOmicsData
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AML2004 Acute myelogenous leukemia dataset

Description

Acute myelogenous leukemia dataset

Format

A list containing properties:

Name Type Description
Gene data.frame mRNA expression data

Group data.frame Data frame indicating the cluster to which each sample is allocated

Source

https://www.pnas.org/doi/full/10.1073/pnas.0308531101

References

Brunet, J. P., Tamayo, P., Golub, T. R., & Mesirov, J. P. (2004). Metagenes and molecular pattern
discovery using matrix factorization. Proceedings of the national academy of sciences, 101(12),
4164-4169.

KIRC Kidney renal clear cell carcinoma dataset

Description

The Cancer Genome Atlas Kidney Renal Clear Cell Carcinoma (TCGA-KIRC) data collection is
part of a larger effort to build a research community focused on connecting cancer phenotypes
to genotypes by providing clinical images matched to subjects from The Cancer Genome Atlas
(TCGA). Clinical, genetic, and pathological data resides in the Genomic Data Commons (GDC)
Data Portal while the radiological data is stored on The Cancer Imaging Archive (TCIA).

This embed version of KIRC in PINPlus package is the reduced version of KIRC using Principle
Component Analysis.

https://www.pnas.org/doi/full/10.1073/pnas.0308531101
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Format

A list containing properties:

Name Type Description
GE data.frame mRNA expression data
ME data.frame DNA Methylation data
MI data.frame miRNA expression data

survival data.frame Clinical survival data

Source

https://portal.gdc.cancer.gov/projects/TCGA-KIRC

References

The results shown here are in whole or part based upon data generated by the TCGA Research
Network: https://www.cancer.gov/tcga.

PerturbationClustering

Perturbation clustering

Description

Perform subtyping using one type of high-dimensional data

Usage

PerturbationClustering(
data,
kMin = 2,
kMax = 5,
k = NULL,
verbose = T,
ncore = 1,
clusteringMethod = "kmeans",
clusteringFunction = NULL,
clusteringOptions = NULL,
perturbMethod = "noise",
perturbFunction = NULL,
perturbOptions = NULL,
PCAFunction = NULL,
iterMin = 20,
iterMax = 200,
madMin = 0.001,
msdMin = 1e-06,

https://portal.gdc.cancer.gov/projects/TCGA-KIRC
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sampledSetSize = 2000,
knn.k = NULL

)

Arguments

data Input matrix. The rows represent items while the columns represent features.

kMin The minimum number of clusters used for automatically detecting the number
of clusters. Default value is 2.

kMax The maximum number of clusters used for automatically detecting the number
of clusters. Default value is 5.

k The number of clusters. If k is set then kMin and kMax will be ignored.

verbose Boolean value indicating the algorithm to run with or without logging. Default
value is TRUE.

ncore Number of cores that the algorithm should use. Default value is 1.

clusteringMethod

The name of built-in clustering algorithm that PerturbationClustering will use.
Currently supported algorithm are kmeans, pam and hclust. Default value is
"kmeans".

clusteringFunction

The clustering algorithm function that will be used instead of built-in algorithms.

clusteringOptions

A list of parameter will be passed to the clustering algorithm in clusteringMethod.

perturbMethod The name of built-in perturbation method that PerturbationClustering will use,
currently supported methods are noise and subsampling. Default value is
"noise".

perturbFunction

The perturbation method function that will be used instead of built-in ones.

perturbOptions A list of parameter will be passed to the perturbation method in perturbMethod.

PCAFunction The customized PCA function that user can manually define.

iterMin The minimum number of iterations. Default value is 20.

iterMax The maximum number of iterations. Default value is 200.

madMin The minimum of Mean Absolute Deviation of AUC of Connectivity matrix for
each k. Default value is 1e-03.

msdMin The minimum of Mean Square Deviation of AUC of Connectivity matrix for each
k. Default value is 1e-06.

sampledSetSize The number of sample size used for the sampling process when dataset is big.
Default value is 2000.

knn.k The value of k of the k-nearest neighbors algorithm. If knn.k is not set then it
will be used the elbow method to calculate k.
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Details

PerturbationClustering implements the Perturbation Clustering algorithm of Nguyen et al. (2017),
Nguyen et al. (2019), and Nguyen et al. (2021). It aims to determine the optimum cluster number
and location of each sample in the clusters in an unsupervised analysis.

PerturbationClustering takes input as a numerical matrix or data frame of items as rows and features
as columns. It uses a clustering algorithm as the based algorithm. Current built-in algorithms that
users can use directly are kmeans, pam and hclust. The default parameters for built-in kmeans are
nstart = 20 and iter.max = 1000. Users can change the parameters of built-in clustering algo-
rithm by passing the value into clusteringOptions.

PerturbationClustering also allows users to pass their own clustering algorithm instead of using
built-in ones by using clusteringFunction parameter. Once clust?eringFunction is specified,
clusteringMethod will be skipped. The value of clusteringFunction must be a function that
takes two arguments: data and k, where data is a numeric matrix or data frame containing data that
need to be clustered, and k is the number of clusters. clusteringFunction must return a vector of
labels indicating the cluster to which each sample is allocated.

PerturbationClustering uses a perturbation method to perturb clustering input data. There are two
built-in methods are noise and subsampling that users can use directly by passing to perturbMethod
parameter. Users can change the default value of built-in perturbation methods by passing new value
into perturbOptions:

1. noise perturbation method takes two arguments: noise and noisePercent. The default values
are noise = NULL and noisePercent = "median". If noise is specified. noisePercent will be
skipped.
2. subsampling perturbation method takes one argument percent which has default value of 80

Users can also use their own perturbation methods by passing them into perturbFunction. Once
perturbFunction is specified, perturbMethod will be skipped. The value of perturbFunction
must be a function that takes one argument data - a numeric matrix or data frame containing data
that need to be perturbed. perturbFunction must return an object list which is as follows:

1. data: the perturbed data
2. ConnectivityMatrixHandler: a function that takes three arguments: connectivityMatrix -
the connectivity matrix generated after clustering returned data, iter - the current iteration and k -
the number of cluster. This function must return a compatible connectivity matrix with the original
connectivity matrix. This function aims to correct the connectivityMatrix if needed and returns
the corrected version of it.
3. MergeConnectivityMatrices: a function that takes four arguments: oldMatrix, newMatrix,
k and iter. The oldMatrix and newMatrix are two connectivity matrices that need to be merged,
k is the cluster number and iter is the current number of iteration. This function must returns a
connectivity matrix that is merged from oldMatrix and newMatrix

The parameters sampledSetSize and knn.k are used for subsampling procedure when clustering
big data. Please consult Nguyen et al. (2021) for details.

Value

PerturbationClustering returns a list with at least the following components:

k The optimal number of clusters

cluster A vector of labels indicating the cluster to which each sample is allocated
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origS A list of original connectivity matrices

pertS A list of perturbed connectivity matrices

References

1. H Nguyen, S Shrestha, S Draghici, & T Nguyen. PINSPlus: a tool for tumor subtype discovery
in integrated genomic data. Bioinformatics, 35(16), 2843-2846, (2019).

2. T Nguyen, R Tagett, D Diaz, S Draghici. A novel method for data integration and disease
subtyping. Genome Research, 27(12):2025-2039, 2017.

3. T. Nguyen, "Horizontal and vertical integration of bio-molecular data", PhD thesis, Wayne State
University, 2017.

4. H Nguyen, D Tran, B Tran, M Roy, A Cassell, S Dascalu, S Draghici & T Nguyen. SMRT: Ran-
domized Data Transformation for Cancer Subtyping and Big Data Analysis. Frontiers in oncology.
2021.

See Also

kmeans, pam

Examples

# Load the dataset AML2004
data(AML2004)
data <- as.matrix(AML2004$Gene)
# Perform the clustering
result <- PerturbationClustering(data = data)

# Plot the result
condition = seq(unique(AML2004$Group[, 2]))
names(condition) <- unique(AML2004$Group[, 2])
plot(

prcomp(data)$x,
col = result$cluster,
pch = condition[AML2004$Group[, 2]],
main = "AML2004"

)
legend(

"bottomright",
legend = paste("Cluster ", sort(unique(result$cluster)), sep = ""),
fill = sort(unique(result$cluster))

)
legend("bottomleft", legend = names(condition), pch = condition)

# Change kmeans parameters
result <- PerturbationClustering(

data = data,
clusteringMethod = "kmeans",
clusteringOptions = list(

iter.max = 500,
nstart = 50
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)
)

# Change to use pam
result <- PerturbationClustering(data = data, clusteringMethod = "pam")

# Change to use hclust
result <- PerturbationClustering(data = data, clusteringMethod = "hclust")

# Pass a user-defined clustering algorithm
result <- PerturbationClustering(data = data, clusteringFunction = function(data, k){

# this function must return a vector of cluster
kmeans(x = data, centers = k, nstart = k*10, iter.max = 2000)$cluster

})

# Use noise as the perturb method
result <- PerturbationClustering(data = data,

perturbMethod = "noise",
perturbOptions = list(noise = 0.3))

# or
result <- PerturbationClustering(data = data,

perturbMethod = "noise",
perturbOptions = list(noisePercent = 10))

# Change to use subsampling
result <- PerturbationClustering(data = data,

perturbMethod = "subsampling",
perturbOptions = list(percent = 90))

# Users can pass their own perturb method
result <- PerturbationClustering(data = data, perturbFunction = function(data){

rowNum <- nrow(data)
colNum <- ncol(data)
epsilon <-

matrix(
data = rnorm(rowNum * colNum, mean = 0, sd = 1.234),
nrow = rowNum,
ncol = colNum

)

list(
data = data + epsilon,
ConnectivityMatrixHandler = function(connectivityMatrix, ...) {

connectivityMatrix
},
MergeConnectivityMatrices = function(oldMatrix, newMatrix, iter, ...){

return((oldMatrix*(iter-1) + newMatrix)/iter)
}

)
})

# Clustering on simulation data
# Load necessary library
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if (!require("mclust")) install.packages("mclust")
library(mclust)
library(irlba)

#Generate a simulated data matrix with the size of 50,000 x 5,000
sampleNum <- 50000 # Number of samples
geneNum <- 5000 # Number of genes
subtypeNum <- 3 # Number of subtypes

# Generate expression matrix
exprs <- matrix(rnorm(sampleNum*geneNum, 0, 1), nrow = sampleNum, ncol = geneNum)
rownames(exprs) <- paste0("S", 1:sampleNum) # Assign unique names for samples

# Generate subtypes
group <- sort(rep(1:subtypeNum, sampleNum/subtypeNum + 1)[1:sampleNum])
names(group) <- rownames(exprs)

# Make subtypes separate
for (i in 1:subtypeNum) {

exprs[group == i, 1:100 + 100*(i-1)] <- exprs[group == i, 1:100 + 100*(i-1)] + 2
}

# Plot the data
library(irlba)
exprs.pca <- irlba::prcomp_irlba(exprs, n = 2)$x
plot(exprs.pca, main = "PCA")

#Run PINSPlus clustering:

set.seed(1)
t1 <- Sys.time()
result <- PerturbationClustering(data = exprs.pca, ncore = 1)
t2 <- Sys.time()

#Print out the running time:

time<- t2-t1

#Print out the number of clusters:

result$k

#Get cluster assignment

subtype <- result$cluster

# Here we assess the clustering accurracy using Adjusted Rand Index (ARI).
#ARI takes values from -1 to 1 where 0 stands for a random clustering and 1
#stands for a perfect partition result.
if (!require("mclust")) install.packages("mclust")
library(mclust)
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ari <- mclust::adjustedRandIndex(subtype, group)

#Plot the cluster assginments

colors <- as.numeric(as.character(factor(subtype)))

plot(exprs.pca, col = colors, main = "Cluster assigments for simulation data")

legend("topright", legend = paste("ARI:", ari))

legend("bottomright", fill = unique(colors),
legend = paste("Group ",

levels(factor(subtype)), ": ",
table(subtype)[levels(factor(subtype))], sep = "" )

)

SubtypingOmicsData Subtyping multi-omics data

Description

Perform subtyping using multiple types of data

Usage

SubtypingOmicsData(
dataList,
kMin = 2,
kMax = 5,
k = NULL,
agreementCutoff = 0.5,
ncore = 1,
verbose = T,
sampledSetSize = 2000,
knn.k = NULL,
...

)

Arguments

dataList a list of data matrices. Each matrix represents a data type where the rows are
items and the columns are features. The matrices must have the same set of
items.

kMin The minimum number of clusters used for automatically detecting the number of
clusters in PerturbationClustering. This paramter is passed to PerturbationClustering
and does not affect the final number of cluster in SubtypingOmicsData. Default
value is 2.
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kMax The maximum number of clusters used for automatically detecting the number
of clusters in PerturbationClustering. This paramter is passed to PerturbationClustering
and does not affect the final number of cluster in SubtypingOmicsData. Default
value is 5.

k The number of clusters. If k is set then kMin and kMax will be ignored.
agreementCutoff

agreement threshold to be considered consistent. Default value is 0.5.

ncore Number of cores that the algorithm should use. Default value is 1.

verbose set it to TRUE of FALSE to get more or less details respectively.

sampledSetSize The number of sample size used for the sampling process when dataset is big.
Default value is 2000.

knn.k The value of k of the k-nearest neighbors algorithm. If knn.k is not set then it
will be used elbow method to calculate the k.

... these arguments will be passed to PerturbationClustering algorithm. See
details for more information

Details

SubtypingOmicsData implements the Subtyping multi-omic data that are based on Perturbaion
clustering algorithm of Nguyen et al (2017), Nguyen et al (2019) and Nguyen, et al. (2021). The
input is a list of data matrices where each matrix represents the molecular measurements of a data
type. The input matrices must have the same number of rows. SubtypingOmicsData aims to find
the optimum number of subtypes and location of each sample in the clusters from integrated input
data dataList through two processing stages:

1. Stage I: The algorithm first partitions each data type using the function PerturbationClustering.
It then merges the connectivities across data types into similarity matrices. Both kmeans and
similarity-based clustering algorithms - partitioning around medoids pam are used to partition the
built similarity. The algorithm returns the partitioning that agrees the most with individual data
types.
2. Stage II: The algorithm attempts to split each discovered group if there is a strong agreement
between data types, or if the subtyping in Stage I is very unbalanced.

When clustering a large number of samples, this function uses a subsampling technique to reduce
the computational complexity with the two parameters sampledSetSize and knn.k. Please consult
Nguyen et al. (2021) for details.

Value

SubtypingOmicsData returns a list with at least the following components:

cluster1 A vector of labels indicating the cluster to which each sample is allocated in
Stage I

cluster2 A vector of labels indicating the cluster to which each sample is allocated in
Stage II

dataTypeResult A list of results for individual data type. Each element of the list is the result
of the PerturbationClustering for the corresponding data matrix provided in
dataList.
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References

1. H Nguyen, S Shrestha, S Draghici, & T Nguyen. PINSPlus: a tool for tumor subtype discovery
in integrated genomic data. Bioinformatics, 35(16), 2843-2846, (2019).

2. T Nguyen, R Tagett, D Diaz, S Draghici. A novel method for data integration and disease
subtyping. Genome Research, 27(12):2025-2039, 2017.

3. T. Nguyen, "Horizontal and vertical integration of bio-molecular data", PhD thesis, Wayne State
University, 2017.

4. H Nguyen, D Tran, B Tran, M Roy, A Cassell, S Dascalu, S Draghici & T Nguyen. SMRT: Ran-
domized Data Transformation for Cancer Subtyping and Big Data Analysis. Frontiers in oncology.
2021.

See Also

PerturbationClustering

Examples

# Load the kidney cancer carcinoma data
data(KIRC)

# Perform subtyping on the multi-omics data
dataList <- list (as.matrix(KIRC$GE), as.matrix(KIRC$ME), as.matrix(KIRC$MI))
names(dataList) <- c("GE", "ME", "MI")
result <- SubtypingOmicsData(dataList = dataList)

# Change Pertubation clustering algorithm's arguments
result <- SubtypingOmicsData(

dataList = dataList,
clusteringMethod = "kmeans",
clusteringOptions = list(nstart = 50)

)

# Plot the Kaplan-Meier curves and calculate Cox p-value
library(survival)
cluster1=result$cluster1;cluster2=result$cluster2
a <- intersect(unique(cluster2), unique(cluster1))
names(a) <- intersect(unique(cluster2), unique(cluster1))
a[setdiff(unique(cluster2), unique(cluster1))] <- seq(setdiff(unique(cluster2), unique(cluster1)))

+ max(cluster1)
colors <- a[levels(factor(cluster2))]
coxFit <- coxph(
Surv(time = Survival, event = Death) ~ as.factor(cluster2),
data = KIRC$survival,
ties = "exact"

)
mfit <- survfit(Surv(Survival, Death == 1) ~ as.factor(cluster2), data = KIRC$survival)
plot(
mfit, col = colors,
main = "Survival curves for KIRC, level 2",
xlab = "Days", ylab = "Survival",lwd = 2
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)
legend("bottomright",

legend = paste(
"Cox p-value:",
round(summary(coxFit)$sctest[3], digits = 5),
sep = ""

)
)
legend(

"bottomleft",
fill = colors,
legend = paste(

"Group ",
levels(factor(cluster2)),": ", table(cluster2)[levels(factor(cluster2))],
sep =""

)
)
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